GARGAML: ADDRESSING MULTITASK AND MULTI-
GOAL TRANSFER WITH GOAL-CONDITIONED META RE-
INFORCEMENT LEARNING AND REPLAY

Ahmed Akakzia, Mohamed Chetouani, Olivier Sigaud

Sorbonne Université, CNRS UMR 7222
Institut des Systemes Intelligents et de Robotique, F-75005 Paris, France
ahmed.akakzia@isir.upmc.fr

ABSTRACT

When tasks and goals are not known in advance, an agent may use either multi-
task learning or meta reinforcement learning to learn how to transfer knowledge
from what it learned before. Recently, goal-conditioned policies and hindsight ex-
perience replay have become standard tools to address transfer between goals in
the multitask learning setting. In this paper, we show that these tools can also be
imported into the meta reinforcement learning when one wants to address transfer
between tasks and between goals at the same time. More importantly, we inves-
tigate whether the meta reinforcement learning approach brings any benefit with
respect to multitask learning in this specific context. Our study based on a ba-
sic meta reinforcement learning framework reveals that showcasing such benefits
is not straightforward, calling for further comparisons between more advanced
frameworks and richer sets of tasks.

1 INTRODUCTION

In an open-ended learning context (Doncieux et al., 2018]), an agent faces a continuous stream of
unforeseen tasks along its lifetime and must learn how to accomplish them. For doing so, two closely
related reinforcement learning (RL) frameworks are available: multitask learning (MTL) and meta
reinforcement learning (MRL).

Multitask learning was first defined in |Caruana (1997). The general idea was to train a unique
parametric policy to solve a finite set of tasks so that it would finally perform well on all these tasks.
Various MTL frameworks have been defined since then (Yang & Hospedales| 2014). For instance,
an MTL agent may learn several policies sharing only a subset of their parameters so that transfer
learning can occur between these policies (Taylor & Stone, [2009). Multitask learning is the matter
of an increasing research effort since the advent of powerful RL methods (Florensa et al.| 2018;
Veeriah et al., 2018 |Ghosh et al.l [2018). But this effort came with a drift from the multitask to
the multigoal context. Actually, the distinction between tasks and goals is not always clear. In this
paper we will rely on an intuitive notion illustrated in Figure [Ta] of task as some abstract activity
such as push blocks or stack blocks, and we define a goal as some concrete state of the world that
an agent may want to achieve given its current task, such as pick block "A” and place it inside
this specific area. If we stick to these definition, a lot of work pretending to transfer between tasks
actually transfer between goals. Anyways, for multigoal learning, goal-conditioned policies (GCPs)
have emerged as a satisfactory framework to represent a set of policies to address various goals, as it
naturally provides some generalization property between these goals. Besides, the use of Hindsight
Experience Replay (HER) (Andrychowicz et al.,2017) has been shown to significantly speed up the
process of learning to reach several goals when the reward is sparse. In this context, works trying to
learn several tasks and several goals at the same time are just emerging (see e.g. Table 1 in|Colas
et al.[(2019)).

Meta reinforcement learning is a broader framework. Generally speaking, it consists in using in-
ductive bias obtained from learning a set of policies, so that new policies for addressing similar
unknown tasks can be learned in only a few gradient steps. In this latter process called fine tuning,



policy parameters are tuned specifically to each new task (Rakelly et al.,2019). The MRL framework
encompasses several different perspectives (Weng, |2019). One consists in learning a recurrent neu-
ral network whose dynamics update the weights of a policy so as to mimic a reinforcement learning
process (Duan et al.| [2016; Wang et al.,[2016). This approach is classified as context-based meta-
learning in [Rakelly et al|(2019) as the internal variables of the recurrent network can be seen as
latent context variables. Another perspective is efficient parameter initialization (Finn et al.,|2017),
classified as gradient-based meta-learning. Here, we focus on a family of algorithms encompass-
ing the second perspective which started with Model-Agnostic Meta-Learning (MAML) (Finn et al.,
2017). A crucial feature of this family of algorithms is that they introduce a specific mechanism to
favor transfer between tasks, by looking for initial policy parameters that are close enough to the
manifold of optimal policy parameters over all tasks.

Actually, though in principle MRL is more meant to address several tasks than several goals in the
same tasks, in practice empirical studies often address the same benchmarks which are multigoal
rather than multitask [Finn et al.| (2017); Rothfuss et al.| (2018); Rakelly et al.[ (2019). Only a few
papers truly transfer knowledge from one task to another (Zhao et al.| 2017} [Colas et al. |2019;
Fournier et al.| |2019), but at least the latter two do not classify themselves as performing MRL.

The common practice in MTL consists in sampling from all target tasks, which limits its applicability
to the open-ended learning context, where some target tasks may not be known in advance. Besides,
transfer between tasks in MTL, or rather between goals, usually relies on the generalization capability
of the underlying function approximator, without any specific mechanism to improve it, resulting in
potential brittleness when this approximator is not appropriate. Nevertheless, when applied to the
multigoal setting using GCPs and HER, this approach has been shown to provide efficient transfer
capabilities.

By contrast, in MRL, the test tasks are left apart during training. To ensure good transfer to these
unseen tasks, the approach in MAML consists in iteratively refining the initial policy parameters so
that a new task can be learned through only a few gradient steps. In principle, this latter transfer-
oriented mechanism makes MRL more appropriate for open-ended learning, where the agent cannot
train in advance on future unknown tasks.

The goal of this paper is to show that the above multigoal and multitask learning mechanisms can
be combined into a single learning framework addressing open-ended learning when each task can
be instantiated with multiple goals. By doing so, we also clarify the relationship between these
mechanisms and show that they are more complementary than competing.

The main contributions of the paper are the following:

o We design a new MAML-like MRL algorithm named GARGAM GARGAML is based on the
Soft Actor Critic (SAC) algorithm (Haarnoja et al.,2018al)), a sample efficient off-policy RL
algorithm, it incorporates GCPs and HER to deal with multiple goals, and uses the specific
transfer-oriented mechanism of MAML to deal with multiple tasks. We show how each of
these components contributes to the better performance of the global system in a series of
benchmarks.

e We show that, when applied to a single task with multiple goals, the specific transfer-
oriented mechanism of MAML does not bring any benefit with respect to just using GCPs
and HER, even when clearly separating training goals from test goals.

e By contrast, we show that the same mechanism plays a crucial role for transfer between
training tasks and test tasks, opening the way to efficient multigoal open-ended learning.

2 RELATED WORK

Deep RL is a successful framework where an agent can learn to solve a task or reach a goal by max-
imizing an external reward signal. Recently, the field has expanded towards agents simultaneously
addressing a set of such tasks (e.g. |Zhao et al.|(2017))) or goals (e.g. |[Florensa et al.| (2018)); [Veeriah
et al|(2018)); |Ghosh et al.| (2018)), but only few works address multiple tasks and multiple goals at
the same time (Colas et al., 2019; |[Fournier et al., 2019). Actually, the latter two demonstrate some

'for ”Goal-Aware Replay in Generalization-Apt Meta-Learning”



transfer between tasks instantiated with multiple goals as we are doing here, but they do so in the
context of intrinsically motivated agents learning their own curriculum, which is not our focus.

The recognition that generalization should be addressed by more clearly distinguishing a set of
training tasks and test tasks is recent in reinforcement learning. This point is central to Zhao et al.
(2019), which also provides a comparison between MTL and MRL in the context of a few dedicated
benchmarks. Our work goes beyond this by combining some MTL and some MRL mechanisms rather
than just comparing them.

Our main contribution in this paper is an MRL algorithm based on MAML which incorporates SAC,
GCPs and HER, resulting in much better performance. At the moment, the MRL framework is the
focus of intensive research effort. Starting from MAML, the REPTILE algorithm (Nichol et al., [2018])
replaced a second order gradient calculation by a faster first order one, showing performance im-
provement in most cases. Leveraging the exploration strategy of meta-learning with a multi-actor
perspective, the MAESN algorithm (Gupta et al., 2018) provided again improved performance and
stability. More recently and closer to our approach, the PEARL algorithm (Rakelly et al.l 2019)
showed impressive increase of sample and time efficiency by relying on SAC instead of REINFORCE
and TRPO. But PEARL uses latent context variables resulting in the capability to consider richer
relationships between tasks, and can be classified as context-based rather than gradient-based meta-
learning. Closer to the original MAML algorithm, the MAML ++ algorithm (Antoniou et al.| [2018)
also improves stability, sample efficiency and performance by fixing a few issues in the original
algorithm. However, the experimental study is focused on supervised meta-learning rather than on
MRL, whereas our focus here is on RL.

To summarize, to our knowledge, no MRL algorithm addresses multiple goals and multiple tasks at
the same time, neither GCPs nor HER have been incorporated into an MRL algorithm yet and SAC
has not been used at the heart of a typical gradient-based MRL algorithm, even if it has already been
used in the more context-based PEARL algorithm.

3 BACKGROUND

Our work compares and combines several existing mechanisms and algorithms which are briefly
described in the following sections. For more details, we refer the reader to the original papers.

3.1 SOFT ACTOR CRITIC

The Soft Actor Critic (SAC) algorithm (Haarnoja et al.,|2018azb)) is a state-of-the-art deep reinforce-
ment learning algorithm which builds on many ideas from the DDPG and TD3 deterministic actor-
critic algorithms, but uses a stochastic actor together with an entropy regularization mechanism. By
doing so, it benefits from the off-policy critic update mechanism of DDPG and TD3, making it pos-
sible to use a replay buffer and improve sample efficiency, but it also avoids the instability of these
algorithms by letting the entropy regularized stochastic actor ensure efficient exploration.

3.2 GOAL-CONDITIONED POLICIES

An early version of goal-conditioned policies (GCPs) before the emergence of deep RL was proposed
in Kaelbling| (1993) to deal with dynamically changing goals. The idea of learning policies condi-
tioned on goals with RL gained a lot of popularity more recently based on Universal Value Function
Approximators (UVFAs) (Schaul et al.,[2015). This approach is now ubiquitous in MTL, where sev-
eral works learn them with goal-parametrized reward functions (Florensa et al., 2018; |Veeriah et al.,
2018).

The notion of GCP itself is formalized in |Ghosh et al.|(2018)). It corresponds to a policy where the
action is conditioned both on the state of the agent and on a goal. When GCPs are represented with
a neural network, they can generalize not only over states but also over goals, leading to a form of
transfer which does not require a specific mechanism.



3.3 HINDSIGHT EXPERIENCE REPLAY

The Hindsight Experience Replay algorithm (Andrychowicz et al.| |2017) proposes a simple yet
effective mechanism to address an environment with several goals when the reward function for
reaching goals is sparse. The general idea is that, whenever an agent is aiming for a goal but reaches
a different state, its trajectory can be used to learn how to reach that particular state as a fictive goal.
Implementing HER is straightforward in the context of RL algorithms using a replay buffer and using
GCPs as a multigoal policy representation. Given that SAC uses a replay buffer, we combine it with
GCPs and HER as our MTL baseline in the empirical studies below, and we call the resulting system
SAC +GCPs +HER.

3.4 MODEL AGNOSTIC META LEARNING

The purpose of the MAML algorithm is to make profit of training tasks to provide a good initialization
of policy parameters so that these policies can be specialized to unseen test tasks after a subsequent
fine tuning stage in very few gradient steps, aka few “shots”. The initialization stage starts with some
policy parameters 6 and comes with two loops. For each sampled training task 7;, the inner loop
first collects data from running the current policy on 7; and separately improves the corresponding
parameters ; from 6 using few steps (typically one) of the REINFORCE vanilla policy gradient
algorithm (Williams, [1992). Then, during the outer loop, these improved policies are trained again
using Trust Region Policy Optimization (TRPO) (Schulman et al.,[2015)), and a sum of the resulting
gradients is finally applied to 6 to get the initial parameters of the next iteration. These meta-
gradient updates contain a gradient of a gradient which can either be computed using a Hessian-
vector product or approximated to first-order gradient (see Weng| (2019) for a clear presentation). In
practice, the obtained parameters # are shown to be a good starting point to learn policies for new
unseen tasks in few shots.

Importantly, a simple analysis shows that, when the first-order gradient approximation variant is
used, the specific transfer-oriented mechanism of MAML is not much different from performing
a simple averaging over the gradient obtained for each task, which is what MTL would do (see
Appendix [E| for details).

4 METHODS

In this section, we present our new GARGAML algorithm, explaining how we combined various
existing components into a single architecture. We first start by clarifying the notions of tasks and
goals incorporated in this paper. We then give a high level explanation of how we incorporate SAC
into an MTL workflow. After that, we present GARGAML as an MRL multigoal algorithm.

4.1 MARKOV DECISION PROCESSES, TASKS AND GOALS

The gap that exists between MDPs, tasks and goals is very tight. Actually, and as we mentioned
earlier in this report, the literature usually opts for the terms multitask and multi-goal interchange-
ably and without any specific disentanglement. We propose here to confront the formal definitions
in order to get a better view on the distinctions and links existing between these terms. We think
this is crucial for the understanding of the rest of the work.

On the one hand, an MDP M is defined as a set of different components {S, A, P, R,~}. In other
words, an MDP is a Markov Chain (in the sense that it satisfies the Markov Property), augmented
by a reward signal and a control mechanism. On the other hand, a task 7 is formally defined with
reference to an MDP as follows (Finn, [2018)):

TM = T = {p(so)vp(5t+1|5ta at)a ‘Ca H}

where s; is a state in S, a; an action in A, £ a loss function and H the time horizon. The state and
action spaces and the probability distribution of transitions are the components of the MDP M to
which is referenced the task 7. Hence, for a single fixed MDP, we can construct multiple tasks
only by changing the initial state probability distribution or the form of the loss function without



modifying the nature of the reward signal. Moving on, a goal g is an element in G suchas G C S.
In other words, a goal g is a reachable state s or a partially-reachable state s.

Usually, reaching a goal terminates the episode. Thereof, the goal is a signal on which depends
the rewards received by the agent. If this signal is internal, meaning that the MDP is defined as
{S*, A, P, R,~v} where Sx = S x G, we are in the context of GCPs. If the goal signal is external
from the MDP (we are not using GCPs), each goal exclusively define a task. Hence, in this case,
multi-goal and multitask mean the same thing.

In Appendix [G| we prove that in the context of GCPs and under some constraints, a multi-goal
problem corresponds to one single task.

4.2 USING SAC TO PERFORM SAMPLE EFFICIENT MRL

The MAML algorithm uses two nested loops based on REINFORCE and TRPO. These algorithms are
stable, but being on-policy they lack sample efficiency and they would benefit from a more efficient
exploration strategy.

By contrast, the SAC algorithm is not only sample efficient as it uses a replay buffer, but also more
robust due to its efficient entropy-based exploration strategy. However, SAC does not incorporate a
mechanism for transferring knowledge between tasks or goals.

As outlined in Section [3] we first designed a SAC +GCPs +HER algorithm to deal with multiple
goals. We now present the GARGAML algorithm which uses SAC +GCPs +HER in its inner and outer
loops and combines it with the transfer-oriented mechanism of MAML to deal with multiple tasks
and perform efficient transfer from training tasks to test tasks in a few shots. However, although
MAML is on-policy and uses actual trajectories to perform updates, GARGAML uses two different
replay buffers: one before the inner update and one after the inner update to be used in the meta-
optimization update of the outer loop.

4.3 USING SAC IN A MTL APPROACH: SAC +HER MTL

In this section, we present the MTL algorithm we use in Section [6.2] to compare our MAML-based
algorithm’s initialization with a classic MTL-based one. We consider exactly the same definition
as SAC algorithm. Nevertheless, we randomly sample a new task from the training-set tasks at
each epoch. If we denote by |7"*"| the number of training tasks, each task is then chosen with
probability Wl‘“"l We share the same replay buffer among all these training tasks. The latter is

motivated by the fact that in the context of sparse reward signals where we use GCPs, all the training
tasks receive similar rewards as a function of the achieved goal and the desired one.

4.4 GOAL-AWARE REPLAY IN GENERALIZATION-APT META-LEARNING

In this section, we give the key components of our new Goal-Aware Replay in Generalization-Apt
Meta-Learning algorithm (GARGAML) which is based on a multi-goal perspective and dedicated
for meta-learning some useful initialization for fast adaptation within a few gradient steps when
encountering previously inexperienced tasks. The foundations of GARGAML makes it an interesting
candidate that provides a benchmark of comparison between the gradient-based meta-learning and
goal conditioned MTL.

GARGAML gives a possibility to use MAML off-policy, thus dodging the sample inefficiency issue
and providing more flexibility to actually test transfer learning between tasks and not only goals.
By definition in Section [3.4] the data used by MAML in reinforcement learning corresponds to
whole trajectories. In fact, the training agent performs K roll-outs before and after the inner update
for each task. These roll-outs are stored as a batch of history to be used either for optimizing the
inner loss or the outer loss. Here, we propose to use replay buffers and sample transitions instead of
using whole trajectories. Based on the fact that the algorithm is permutation invariant (Finn, |2018),
we propose a fast mechanism to perform nested optimizations aiming at finding optimal sets of
parameters in the manifold between task-specific optimal parameters set.



Given that MAML deals in an iterative scheme with each of the meta-training tasks, it is important
that the transitions sampled from the buffer correspond to the actual task at hand. Assuming that
each task corresponds to a different Markov Decision Process, using one single replay buffer is
not efficient: imagine that you meta-train a robot to push blocks on a table, meaning that you are
looking for an initialization of the parameters of the models such that few inner gradient updates
are sufficient for optimal performance, then using transitions from a block stacking task would be
absurd. Another way of seeing this: at meta-testing time, you would have one single unknown task
that you want to solve. You would sample transitions for this unique task, however, during training,
you used transitions from multiple tasks. This may lead to an actual underfitting problem growing
as the tasks differ from one another.

Hence, we use a multitask replay buffer: a dictionary of replay buffers for each task. When
collecting trajectories for the task 7;, we would store them in the replay buffer R;.

Moving on, GARGAML is based on the SAC algorithm and detailed in [Haarnoja et al.| (2018a) and
Haarnoja et al.| (2018a). As an actor-critic algorithm, SAC optimizes a loss function for the actor
Lqctor and a loss function for the critic L.,;;.. However we remind that there are constraints on the
loss function in meta-learning that we briefly highlighted in Section [3.4]and that are more detailed
in [Finn| (2018). We show in Appendix [E that the actor loss function L,.t,, is not adequate for
gradient-based meta-reinforcement learning. Thereof, we only perform the meta-optimization step
using gradients of the critic loss function VyL.,;1;c, meaning that we transfer the actor parameters
without meta-optimization step whereas the critic parameters receive this meta-optimization step.
Algorithm [I|shows more details about how GARGAML works.

Algorithm 1 GARGAML for Reinforcement Learning

Require: p(7): distribution over tasks
Require: Step size parameters for each network
randomly initialize ¢, 61, 0> -
target Q networks: 7 = 6 and 6, = 0,
initialize buffers R = {R1, Ra2, ...} and Royneta = {Rmetals Rmeta2, ---
while not done
Sample batch of tasks 7; ~ p(T)
for all 7;
for all environment steps
ar ~ Tg(ar|st)
st ~ p(Str1st, ar)
R Ri U{(s¢,ae,7(s¢,a¢), 5141)}
Use HER to append R;
for all gradient steps
update parameters ¢°, 0%, 0% using R; and T;
reset environment
for all environment steps
ar ~ mp(aglst)
s¢ ~ p(Se41]5¢, ar)
Rmetn,i — Rm,eta,i U {(5t7 Qt, T(Sta at)a 5t+1)}
Sample batch of meta tasks 7;7*% ~ p(T)
Meta-optimization update 67 and 05 using Retq and 7;7¢*“ (Only the critic)

5 EXPERIMENTAL SETUP

The GARGAML algorithm combines multigoal RL using SAC +GCPs +HER and MRL to learn new
multigoal tasks in few shots. However, when including GCPs in an MRL framework, it might be the
case that the underlying policy representation is rich enough so that a single policy parameter vector
6 can solve all tasks without any subsequent fine tuning.



Our first experiment is designed to stress that this perspective, which considers MTL and MRL as two
competing mechanisms to address multigoal RL problems, is inadequate.

We show that, when addressing a single task with multiple goals, the transfer-oriented mechanism
of MAML that we included in GARGAML does not bring any performance improvement with respect
to SAC +GCPs +HER.

So, is the transfer-oriented mechanism of GARGAML useless? To answer this question, our second
experiment compares two initialization stages with multigoal training tasks, one with SAC +GCPs
+HER and one with GARGAML. We show that the transfer-oriented mechanism of GARGAML is
crucial for subsequent fine tuning on unseen tasks, thus for open-ended learning.

We perform the above experiments using 4 environments of increasing dimension and complex-
ity, based on the FETCH robotics environment [Plappert et al.| (2018)), namely FETCHREACH-v1,
FETCHPUSH-v1, FETCHSLIDE-vl and FETCHPICKANDPLACE-vl. After describing them, we
present our evaluation protocol.

ﬁTasks: Pick and place
‘cubes, push cube, reach
‘spot, stack cubes ...

() (b)

Figure 1: (a) The FETCH environment, with various tasks and goals. (b) Schema of the multigoal
evaluation protocol in the first experiment.

5.1 FETCH ENVIRONMENTS

All the FETCH environments we used are based on a 7-DoF simulated robotics arm with a two-
fingered parallel gripper (Plappert et al., 2018), see Figure[Tal Actions are 4-dimensional: 3 dimen-
sions specify the desired gripper movement in Cartesian coordinates and the last dimension controls
whether the gripper is open or closed. In all or environments, rewards are sparse and binary: the
agent obtains a reward of 1 if the goal is reached and 0 otherwise. The agent action frequency
is f = 25 Hz. In order to provide the agent with a GCP representation, we append the 3 values
corresponding to the goal position to the state representation.

5.2 PROTOCOL IN THE FIRST EXPERIMENT

We first compare GARGAML and SAC +GCPs +HER in their ability to transfer between multiple goals
in the context of a single task.

The 2D plane is decomposed into 4 zones as depicted in Figure [Ib} zones A, B and C form the
training zone ABC, whereas zone D is the testing zone. Goals are sampled uniformly in the 3D
space generated by these zones depending on whether this is a training or a test trial.

The goal comes with a sparse reward function which is +1 if the Euclidean distance between the
agent and the goal is less or equal than the predefined threshold. The starting position of the agent
is in O at the center of the 3D plane and it must reach the rewarded area at each episode within a
horizon of H timesteps.



For all experiments in the FETCHREACH-v1, FETCHPUSH-v1 and FETCHPICKANDPLACE-v1 en-
vironments, training uses 50 epochs, and 100 in FETCHSLIDE-v1. Each epoch contains 2 cycles of
50 episodes of length 50 each, and we use 5 seeds for each training process. Further details about
the configuration and parameters are given in Appendix [A]

Evaluation is performed as follows: at the end of each epoch, the obtained parameters are tested on
goals drawn from the testing zone, where the evaluation metric is the success rate.

5.3 PROTOCOL IN THE SECOND EXPERIMENT

In this section, we consider transfer between tasks rather than between goals.

We consider the standard FETCHREACH-v1l, FETCHPUSH-vl, FETCHPICKANDPLACE-v1 and
FETCHSLIDE-vIFETCH robotics environments. Among these environments, we consider
two sets of tasks: the training tasks set contains FETCHREACH-vl, FETCHPUSH-vl and
FETCHPICKANDPLACE-v1, whereas the test tasks set just contains FETCHSLIDE-vl. As men-
tioned is Section [4.4] we share the same replay buffer for the training tasks in the SAC +HERMTL
algorithm. For the proposed GARGAML algorithm, we opt for task-specific replay buffer since we
are interested in updating task-specific copies of the model parameters for each of the training tasks
separately in the inner loop. Furthermore, task-specific replay buffers allow the evaluation of the
fine-tuning for each task during the meta-optimization step.

6 EXPERIMENTAL RESULTS

As stated in Section[5] our experimental work is designed to answer the following questions:

e Does the specific transfer-oriented mechanism of GARGAML facilitate learning a single
policy to reach multiple goals in a single task?

e Does it facilitate learning new tasks with multiple goals when using fine tuning after finding
a good initialization from training tasks?

The results of the corresponding experiments are described below.

6.1 ONE TASK, MULTIPLE GOALS

In this section, we train the GARGAML agent and the SAC +GCPs +HER agent to reach multiple goals
in the same task for two different tasks.

Results are presented in Figure One can see that both in FETCHREACH-v1 (Figure and
FETCHPUSH-v1 (Figure [2b), both agents perform at the same level and reach a success rate of
100%.

From the fact that they reach a 100% success rate, one can conclude that fine tuning is not necessary
in this context, because using GCPs makes it possible to represent all goals with a unique set of
parameters.

From the fact that GARGAML and SAC +GCPs +HER perform very similarly, one can conclude that
in this context, the transfer-oriented mechanism of MAML does not bring any benefit in terms of
generalization capability. This is not much surprising given that this mechanism is not much dif-
ferent from gradient averaging as performed in standard MTL. The open question is now: does this
mechanism make a significant difference when transferring from some tasks to other unseen tasks
and using fine tuning to address these new tasks? We investigate this question in the next section.

6.2 UNSEEN TASKS WITH MULTIPLE GOALS
In this section, we compare:

e Fine tuning starting from the initial policy parameters learned with GARGAML, versus
learning a policy on the testing held-out task from scratch.

e GARGAML'’s capability to accelerate the acquisition of the new held-out testing task versus
that of SAC +HER MTL trained not only on one task but on the whole training tasks.



Success rate in zone D during training, FetchReach-v1 Success rate in zone D during training, FetchPush-v1

10 10
0.8 1 0.8 1
2 2
© ©
: 0.6 1 : 0.6 1
@ @
@ @
< <
o o
1 1
Y 0.4+ Y 0.4+
0.2 0.2
0.0 T T T T T T T T 0.0 T T T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50
Epochs Epochs
—— SAC+HER —— GARGAML —— SAC+HER —— GARGAML
(a) (b)

Success rate in zone D during training, FetchPickAndPlace-v1l

1.0

Success rate

0.0

f T y T v y
0 10 20 30 40 50
Epochs

—— SAC+HER —— GARGAML

©

Figure 2: Success rate progress in testing zone D during training (500 epochs) in (a) FETCHREACH-
vl (b) FETCHPUSH-v1 (¢c) FETCHPICKANDPLACE-v1

Results are presented in Figure[3] One can see that an initialization learned using the training tasks
accelerates the fine tuning for each of these training tasks. This shows that the tasks used for training
share a certain structure and that we managed to find optimal parameters capable of performing quite
well on all these tasks at the same time. In other words, the sets of optimal parameters of the training
tasks intersect and the learned parameters lay somewhere in this intersection. Otherwise, we could
have had a catastrophic forgetting phenomenon. Thus, it would have been impossible to find optimal
parameters able to perform optimally on all training tasks at the same time.

Furthermore, Figure 3a] shows that SAC +HER MTL manages to converge quicker that GARGAML.
This is not much surprising, as SAC +HER MTL is designed to perform well on the training tasks set
whereas GARGAML is designed to provide a quick fine tuning when facing new held-out tasks via
the meta-optimization step.

Finally, Figure 3c|shows that SAC +HER MTL provides a better initialization than GARGAML as fine
tuning from the former is quicker than from the latter. This means that:

e cither the meta-optimization step is not needed to efficiently transfer learning between tasks
when working with GCPs;

e or the FETCH robotics environments are so similar that an additional meta-optimization
step with a large meta-learning rate is detrimental to the transfer of skills.



Success rate in FetchPickAndPlace-v1 trained using SAC+HER

Success rate in FetchPush-v1 trained using SAC+HER e
and corresponding initializations

and corresponding initializations

1.0 4 —_ 1.0
0.8 | 087
2
£ 061 w 007
n i
o @
@ G
I g
< 5
7 @
“ 0.4 04
0.2 4 0.2 4
0.0 T T T T T 0.0 T
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs
—— SAC+HER (from scratch) —— SAC+HER_MT init —— GARGAML init (ours) —— SAC+HER (from scratch) —— SAC+HER_MT init —— GARGAML init (ours)
(a) (b)

Success rate in FetchSlide-v1 trained using SAC+HER
and corresponding initializations

Success rate

0 20 40 60 80 100
Epochs

—— SAC+HER (from scratch) —— SAC+HER_MT init —— GARGAML init (ours)

(©

Figure 3: Success rate progress using SAC +HER algorithm with different initializations on previ-
ously seen training tasks (a) FETCHPUSH-v1 (b) FETCHPICKANDPLACE-v1 and on the held-out
testing task (c) FETCHSLIDE-v1

7 CONCLUSION AND FUTURE WORK

The first experiment shows that using MRL is useless when dealing with multiple goals of a single
task in the context of GCPs. The second experiment shows that our proposed GARGAML algorithm
is faster when adapting to new previously unseen multigoal tasks. This provides us more insight
about the role of GCPs:

e First, let’s consider the single task, multiple goals case. Without GCPs, the agent must
explore when encountering new goals. The only thing that differs is the reward function,
which is function of the goal. If the goal is appended to the state space using GCPs, the
reward function depends only on the state (implicitly on the goal, but here it is included in
the state). So using GCPs makes our model Goal-Agnostic.

e FETCHREACH-v1, FETCHPUSH-v1 and FETCHPICKANDPLACE-vI share the same state
space, action space and probability distribution. Only the reward function differs, de-
pending on the red spot position. When using GCPs, the reward function becomes Goal-
Agnostic, thus the model itself becomes Task-Agnostic for the three tasks above. This
explains why we can find a policy that performs well on all these tasks at the same time.
However, FETCHSLIDE-v1 does not share the same probability distribution with the other
tasks as the object’s friction changes. So the model needs to adapt to this change. We
showed that GARGAML is slightly faster that the used MTL approach. In fact, the meta-
optimization step incorporated in GARGAML makes it more sensitive to the changes in the

10



task as the parameters found by the algorithm lie in the manifold between the set of FETCH
tasks. This is why it slightly outperforms the concurrent MTL approach.

From the above thoughts, and even though we managed to show that GARGAML is slightly better
than the MTL approach when adapting to the new unseen multigoal task, it is clear that we cannot
conclude outright that MRL always outperforms MTL in the context of multigoal, multitask transfer:
using a richer of test tasks is necessary, and further experiments with additional MRL mechanisms
such as the ones used in PEARL may provide different results. Nevertheless, in this report we have
provided the first empirical comparison between MTL and MRL when using GCPs from both sides,
and our results have shown that there might be an advantage in using MRL to transfer the learning
between multigoal tasks.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay. arXiv
preprint arXiv:1707.01495, 2017.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. arXiv preprint
arXiv:1810.09502, 2018.

Richard Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.

Cédric Colas, Pierre-Yves Oudeyer, Olivier Sigaud, Pierre Fournier, and Mohamed Chetouani. CU-
RIOUS: Intrinsically motivated multi-task, multi-goal reinforcement learning. In International
Conference on Machine Learning (ICML), pp. 1331-1340, 2019.

Stephane Doncieux, David Filliat, Natalia Diaz-Rodriguez, Timothy Hospedales, Richard Duro,
Alexandre Coninx, Diederik M. Roijers, Benoit Girard, Nicolas Perrin, and Olivier Sigaud. Open-
ended learning: a conceptual framework based on representational redescription. Frontiers in
Robotics and Al 12, 2018. doi: 10.3389/fnbot.2018.00059.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Chelsea Finn. Learning to Learn with Gradients. PhD thesis, UC Berkeley, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1126-1135. JMLR. org, 2017.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International Conference on Machine Learning, pp. 1514—
1523, 2018.

Pierre Fournier, Olivier Sigaud, Mohamed Chetouani, and Cédric Colas. CLIC: Curriculum
learning and imitation for feature control in non-rewarding environments. arXiv preprint
arXiv:1901.09720, 2019.

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with goal-
conditioned policies. arXiv preprint arXiv:1811.07819, 2018.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In Advances in Neural Information
Processing Systems, pp. 5302-5311, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

11



Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI pp. 1094-1099, 1993.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with implicit
gradients. arXiv preprint arXiv:1909.04630, 2019.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. arXiv preprint arXiv:1903.08254,
2019.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International Conference on Machine Learning, pp. 1312—-1320, 2015.

John Schulman, Sergey Levine, Philipp Moritz, Michael 1. Jordan, and Pieter Abbeel. Trust region
policy optimization. CoRR, abs/1502.05477, 2015.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633-1685, 2009.

Vivek Veeriah, Junhyuk Oh, and Satinder Singh. Many-goals reinforcement learning. arXiv preprint
arXiv:1806.09605, 2018.

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Lilian = Weng. Meta reinforcement learning. lilianweng. github.io/lil-log,
2019. URL |http://lilianweng.github.io/1i1-10g/2019/06/23/

meta-reinforcement-learning.html.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992.

Yongxin Yang and Timothy M. Hospedales. A unified perspective on multi-domain and multi-task
learning. arXiv preprint arXiv:1412.7489, 2014.

Chenyang Zhao, Timothy Hospedales, Freek Stulp, and Olivier Sigaud. Tensor-based knowledge
transfer across skill categories for robot control. In Proceedings IJCAI, 2017.

Chenyang Zhao, Olivier Sigaud, Freek Stulp, and Timothy M Hospedales. Investigating generalisa-
tion in continuous deep reinforcement learning. arXiv preprint arXiv:1902.07015, 2019.

A HYPER-PARAMETERS

In this appendix, we present the hyper-parameters that we used in our experiments for each agent
during training and fine-tuning.

12


http://lilianweng.github.io/lil-log/2019/06/23/meta- reinforcement-learning.html
http://lilianweng.github.io/lil-log/2019/06/23/meta- reinforcement-learning.html

B PARAMETERS USED WITH SAC +HER

Parameter Value
Actor network learning rate 0.001
Critic network learning rate 0.001
Entropy learning rate 0.001
Discount factor for critic updates ~y 0.98
Soft target update parameter o 0.001
Maximum size of the replay buffer 1000000
Size of minibatch for minibatch-SGD 256
Random seed 123
Number of epochs 200
Maximum number of episodes per epoch 50
Number of gradient updates 40
Maximum episode length 50
HER true / false
k her 4

C PARAMETERS USED WITH GARGAML
Parameter Value
Actor network learning rate 0.001
Critic network learning rate 0.001
Entropy learning rate 0.001
Actor network meta-learning rate 0.005
Critic network meta-learning rate 0.005
Discount factor for critic updates ~y 0.98
Soft target update parameter o 0.001
Maximum size of the replay buffer 1000000
Size of minibatch for minibatch-SGD 256
Size of minibatch for meta-optimization 128
Random seed 123
Number of epochs 200
Number of inner gradient updates 10
Maximum number of episodes per epoch 50
Maximum episode length 50
HER true / false
k her 4

D PARAMETERS USED WITH SAC +HER MTL
Parameter Value
Actor network learning rate 0.001
Critic network learning rate 0.001
Entropy learning rate 0.001
Discount factor for critic updates 0.98
Soft target update parameter o 0.001
Maximum size of the replay buffer 1000000
Size of minibatch for minibatch-SGD 256
Random seed 123
Number of epochs 200
Number of gradient updates 20
Maximum number of episodes per epoch 50
Maximum episode length 50
HER true / false
k her 4

13




E GRADIENTS IN MAML AND MTL

In this section we compare the computation of gradients in MAML and the MTL algorithm we used.
At first glance, the differences are the following:

e MAML uses a meta-optimization step, making it necessary to distinguish gradient compu-
tation in the inner and outer update.

e MAML requires performing new rollouts after each update in order to obtain the validation
trajectory set.

e In MAML, the meta-parameters only change at the end of each epoch. This means that
back-propagation needs to be performed through the outer and the inner update. Hence,
the gradients are always computed with respect to the initial parameters. By contrast, with
MTL, the model parameters change at each update.

In the more detailed presentation given below, we are interested in the expression of the gradient at
the end of a single epoch. Notations are provided bit by bit as we show the computational details.

E.1 MAML GRADIENT

We initialize the model parameters 6y randomly. We sample a batch of N tasks and we perform k
inner update for each task:

05 = 6o
i =05 — aVeL(0y, D)
05 = 0, — aVeL(6],D;")

=01 —aVeL(0)_,,D}")

Where D!" corresponds to the trajectories obtained in the task i using the parameters before the
considered update. At the end of the last inner update of the last task in the batch, we obtain a
sequence of parameters {01,602 603, ...,0N} for each of the N tasks. These parameters are used to
generate new trajectories DY for each task i.

In the outer loop, MAML uses the newly sampled trajectories to update the meta-objective:

0 < 60— Bgnamr,

14



where gnranrr 1s computed in (Wang et al.| |2016). Here we take back the same computations and
add summation across all copies of task-specific parameters:

N
gmamrL = Vg Zﬁ( i DY)

i=1

N
=D VoL(6;, D))
i=1

N
= Vi L0}, D). (Vg O1)--(Vg:01).(Vobp)

k

N
=D Vg L£(6;. D). ][ Vo6
i=1 j=1

N k

=D Vo £ D). ][ Vo (651 —aVeL(6;_,,Di"))
i=1 j=1
N k

=Y Vo £(6;, Dy [ (1 - aV: (VoL (0;_,.Df"))
i=1 j=1

E.2 MULTITASK LEARNING ALGORITHM GRADIENT

In MTL, there is no distinction between an inner and an outer loop. The model parameters 6, are
initialized randomly. In contrast to MAML, the gradients do not refer to the initial parameters but to
the last updated one. We start by sampling a batch of N tasks. We perform & updates for each task
sequentially:

0 = 6o
01 = 0} — aV,£(05, D)
05 = 01 — aVg L(01,D)

Op = 01 — av%ﬂc(e,i,hp)
05 = 0 — aVgi L(6}, D)

Ony = O5_s — aveﬁizﬁ(ﬁ,}c{%l}),

where D is a shared set of trajectories between all tasks. Note that sharing the same buffer for
different tasks comes with some constraints: tasks must share a common MDP structure, onlmy the
reward is task-specific. This is the case of the FETCH robotics environments.

To get a mathematical expression of the MTL gradient at the end of an epoch, which we note
gmTL, wWe use the recursive relation found above. For simplicity of notations, we note the sequence

(08,608,602, .02, ...0N ...0N )= (Yo, ... hwk):

15



YNk = Unk—1 — Vi, L(YNk—1,D)
= ka72 - av?,ka—QE(’(/}Nk*Q’ D) - avak—lﬁ(ka*17 D)

NEk—1

=t —a Z Vi, L(¥i, D)

i=0
=0 — AgMTL-

Since 1; = 0:% ’2+1, the overall update after on epoch is:

0« 60— QAGMTL -

MAML first-order MAML

6

e Alg;

------ >V Li(6)

—— computation
dL;(¢;)

d P37

Figure 4: Diagram showing the path taken during the optimization step. Alg; refers to the inner
updates taken during task labeled ¢ (image taken from Rajeswaran et al.|(2019)).

Used multi-task algorithm

0o

LN Algl
— Algz
— Algs
----3 computations

gMTL

3
ek—l

Figure 5: Diagram showing the path taken by the used multi-task algorithm. Here the computation
is done at each step contrarily to what is shown in Figure ] where computation is performed in the
meta-update step. Alg; refers to the updates taken during task labeled i.

Even though optimization-based MRL and MTL may seem very related, the gradients they compute
are a lot different. The main differences are:

e During one single epoch, MTL tends to update the model parameters during each gradient
step, leading to more overall updates than optimization-based MRL. The latter tends to
create copies of the meta-parameters, update each copy according to each task and then
back-propagate through the inner optimization step to compute the gradients.

e Back-propagating through the inner optimization-step leads to second-order gradients
derivative computations. The considered loss functions are differentiable almost every-
where. Computing the second-order derivative may be tricky. In fact, back-propagating
through the inner-updates may lead to unstable gradients.

16



E

gMAML = Zfilveg (0}, Dy H (I —aVy: (VoL(05_,, D))

o (1)
gMTL = Zij\gf)_l Vy, (%‘» )

F SOFT-ACTOR-CRITIC LOSS FUNCTIONS SPECIFICATIONS

In this appendix, we show show that the critic loss function in SAC satisfies the specifications given
in |Finn| (2018)) whereas the actor loss function does not.

The loss functions of the critic and the actor of the SAC algorithm can be written as follows:

1
£c7'itic(ya yt'rue) = §||y - yt7'ue| ‘2
Eactor(ya ytrue) = logy — Ytrue

where e corresponds in each case to the correspondent value taken as label in the SAC algorithm
(Haarnoja et al.| [2018b)). The gradient with reference to the output are given as follows:

Vy»ccritic(y,o) =Y
Vyﬁactor(yv O) =

Q| =

We clearly see that the gradient of critic loss function is linear with reference to the output of the last
layer when the true value is taken equal to 0 and that the matrix A = —1 is invertible. Nevertheless,
this not the case for the actor loss function.

G MULTITASK PROBLEM WITH GOAL CONDITIONED POLICIES AND SPARSE
REWARDS

In this appendix, we propose to show that multigoal learning within one single task doesn’t corre-
spond to multitask learning when using GCPs. In other words, GCPs make multigoal learning not
suitable for multitask framework. This explains why MRL doesn’t bring too much when compared
to MTL in the context of GCPs. Note that here we use the definition of task given in |Finn| (2018)).

Theorem 1 Let 7 = {71, 73,..., Tw} be a set of reaching tasks i.e tasks that involve reaching
particular goals and where:

Ti = {pi(s0), pi(st41l8¢,a¢), Li}
= {P(so)»P(St+1\8t,at)7£i}

If the following constraints are satisfied:

e The Markov Decision Processes corresponding to each task ¢ share the same state space S,
action space A and discount factor ~.

o Li=—Eo o [S007" (50, a0)ls0]
o S = (O x G where O the set of observations and G the set of goals such that G C O

Then 7; = 7; V(i, j) € [1,..., N]?

17



Demonstration  For each task i, we denote ¢’ the goal position to be reached.
Vt < H, s, = (04,9") = (8¢, 87) = (s9,59) where o, € O and g* € G.

Let 7'2 : O x G x A — R denote the reward function specific the task ¢ that takes a state and an
action taken and outputs the reward received from the environment. Then we have:

ri(se,ar) = E[f(s141) 50, au] Vsi € S,ar,€ A

where f : O x G — R denotes any function that evaluates how close the new position reached from
s¢ when taking action a, is to the goal (example euclidean distance, binary 0/1, binary -1/0 ...)

:/ f((0,9))p((0,9)|s¢, ar)dodg (variable change)
9eg

|ttt
oeO

- / £((0,59))p((0, 551, ar)do
ocO

0((0,g")|5¢, as)do (the goal is fixed)

Since the reward function does not depend on the task 7 anymore, then:

rt(st,at) Tg(st,at) Vi, j € [1,...,N]

As a consequence, £; = L£; Vi, j € [1,..., N|, which leads to the wanted result.

Hence, when using GCPs and single task multigoal learning, MRL is actually receiving one task
during training and needs to fine-tune on that same task, even though we decompose the space into
training and testing zone.

18



	Introduction
	Related work
	Background
	Soft Actor Critic
	Goal-conditioned policies
	Hindsight Experience Replay
	Model Agnostic Meta Learning

	Methods
	Markov Decision Processes, tasks and goals
	Using SAC to perform sample efficient MRL
	Using SAC in a mtl approach: sac +her mtl
	Goal-Aware Replay in Generalization-Apt Meta-Learning

	Experimental setup
	Fetch Environments
	Protocol in the first experiment
	Protocol in the second experiment

	Experimental results
	One task, multiple goals
	Unseen tasks with multiple goals

	Conclusion and future work
	Hyper-parameters
	Parameters used with sac +her
	Parameters used with gargaml
	Parameters used with sac +her mtl
	Gradients in MAML and MTL
	maml gradient
	Multitask Learning algorithm gradient

	Soft-Actor-Critic loss functions specifications
	Multitask problem with Goal Conditioned Policies and sparse rewards

